Colour image segmentation using the self-organizing map and adaptive resonance theory

نویسندگان

  • N. C. Yeo
  • K. H. Lee
  • Y. V. Venkatesh
  • Sim Heng Ong
چکیده

We propose a new competitive-learning neural network model for colour image segmentation. The model, which is based on the adaptive resonance theory (ART) of Carpenter and Grossberg and on the self-organizing map (SOM) of Kohonen, overcomes the limitations of (i) the stability–plasticity trade-offs in neural architectures that employ ART; and (ii) the lack of on-line learning property in the SOM. In order to explore the generation of a growing feature map using ART and to motivate the main contribution, we first present a preliminary experimental model, SOMART, based on Fuzzy ART. Then we propose the new model, SmART, that utilizes a novel lateral control of plasticity to resolve the stability–plasticity problem. SmART has been experimentally found to perform well in RGB colour space, and is believed to be more coherent than Fuzzy ART. q 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

An Adaptive Color Segmentation Algorithm for Sony Legged Robots

This paper presents an adaptive colour segmentation algorithm for Sony legged robots to play a football game. A Self-Organizing Map (SOM) is adopted to measure the current lighting condition and an Artificial Neural Network (ANN) is implemented to produce a suitable General Color Detection (GCD) table. Off-line learning is conducted in color segmentation in order for Sony-legged robots to adapt...

متن کامل

Local Adaptive Receptive Field Self-organizing Map for Image Segmentation

A new self-organizing map with variable topology is introduced for image segmentation. The proposed network, called Local Adaptive Receptive Field Self-organizing Map (LARFSOM-RBF), is a two-stage network capable of both color and border segment images. The color segmentation stage is responsibility of LARFSOM which is characterized by adaptive number of nodes, fast convergence and variable top...

متن کامل

Diagnosis of brain tumor using PNN neural networks

Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Image Vision Comput.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2005